
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Automated Software Architecture Extraction Using
Graph-based Clustering
John Thomas Chargo
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chargo, John Thomas, "Automated Software Architecture Extraction Using Graph-based Clustering" (2013). Graduate Theses and
Dissertations. 12983.
https://lib.dr.iastate.edu/etd/12983

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12983?utm_source=lib.dr.iastate.edu%2Fetd%2F12983&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Automated software architecture extraction

using graph-based clustering

by

John Thomas Chargo

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Suraj Kothari, Major Professor

Tien Nguyen

Joseph Zambreno

Iowa State University

Ames, Iowa

2012

Copyright c© John Thomas Chargo, 2012. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to the friends, family, and teachers who have inspired,

supported, and motivated me.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. OVERVIEW . 1

CHAPTER 2. BASICS OF CLUSTERING AND GRAPHS 2

CHAPTER 3. SOFTWARE CLUSTERING AND GRAPHS 4

CHAPTER 4. PROPOSED APPROACH . 6

CHAPTER 5. RELATED RESEARCH . 8

5.1 Star Diagrams: Designing Abstractions out of Existing Code 8

5.2 Clustering Software Using Knowledgebase . 9

5.3 Term Weighting Schemes for Labeling Clusters 10

5.4 Weighted Combined Algorithm . 11

5.5 Hierarchical Clustering for Software Architecture Recovery 14

CHAPTER 6. EXPERIMENTAL SETUP . 16

CHAPTER 7. PARTITIONAL ALGORITHM DEVELOPMENT 18

7.1 Algorithm 1 . 19

7.2 Algorithm 2 . 20

7.3 Algorithm 3 . 21

7.4 Algorithm 4 . 23

www.manaraa.com

iv

CHAPTER 8. RESULTS . 25

8.1 Partitional Clustering Algorithm . 25

8.2 Weighted Combined Algorithm . 29

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 32

APPENDIX A. PARTITIONAL ALGORITHM CLUSTER RESULTS 34

APPENDIX B. WEIGHTED COMBINED ALGORITHM RESULTS 40

BIBLIOGRAPHY . 44

www.manaraa.com

v

LIST OF TABLES

Table 8.1 Xinu Subsystem Truth Data . 27

Table 8.2 Partitional Algorithm Precision and Recall Score 28

Table 8.3 Weighted combined Algorithm Precision and Recall Score 30

Table A.1 Paritional Algorithm Xinu Clusters . 34

Table B.1 Weighted Combined Algorithm Xinu Clusters 40

www.manaraa.com

vi

LIST OF FIGURES

Figure 5.1 Star Diagram . 9

Figure 5.2 Weighted Combined Algorithm Feature Vector 12

Figure 5.3 Weighted Combined Algorithm Combined Feature Vector 13

Figure 5.4 Weighted Combined Algorithm vs Complete, Xfig f files Subsystem . . 14

Figure 7.1 Partitional Algorithm 1 Example . 20

Figure 7.2 Partitional Algorithm 2 Example . 21

Figure 7.3 Partitional Algorithm 3 Example . 22

Figure 7.4 Partitional Algorithm 4 Example . 24

Figure 8.1 Graph Viewer Output of Sample Clusters 26

Figure 8.2 Precision, Recall and F-Score of Xinu Analysis 29

Figure 8.3 Weighted Combined Algorithm Precision, Recall and F-Score 31

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks for those that helped me in conducting research and

writing this thesis. First and foremost I’d like to thank my major professor, Dr. Suraj Kothari

for his direction and guidance throughout the development of this thesis. His knowledge of

software engineering and experience in guiding graduate research has been invaluable. I’d also

like to thank my committee members for their contributions to this work: Dr. Tien Nguyen

and Dr. Joseph Zambreno.

www.manaraa.com

viii

ABSTRACT

As the size and complexity of software grows developers have an ever-increasing need to un-

derstand software in a modular way. Most complex software systems can be divided into smaller

modules if the developer has domain knowledge of the code or up-to-date documentation. If

neither of these exist discovery of code modules can be a tedious, manual process.

This research hypothesizes that graph-based clustering can be used effectively for automated

software architecture extraction. We propose methods of representing relationships between

program artifacts as graphs and then propose new partitional algorithms to extract software

modules from those graphs. To validate our hypothesis and the partitional algorithms a new

set of tools, including a software data miner, cluster builder, graph viewer, and cluster score

calculator, were created. This toolset was used to implement partitional algorithms and analyze

their performance in extracting modules. The Xinu operating system was used as a case study

because it has defined modules that can be compared to the results of the partitional algorithm.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

As the size and complexity of software grows developers have an ever-increasing need to

understand software in a modular way. It is impractical for one person to understand all

the code in a large system. However, most complex software systems can be divided into

many smaller modules. For instance, an operating system might contain modules that handle

tasks, file I/O, networking, or memory management. If a developer can identify these modules

the task of understanding the code becomes easier. If the developer with knowledge of these

modules sets out to modify the software, he or she won’t need to understand everything about

all modules, but rather the module he or she is modifying and how it interacts with the other

modules.

Frequently the existence of code modules is known to the developers only after they gain

significant domain knowledge of the software. For instance, a developer working on operating

system software would probably know there are file, network, and task scheduling subsystems.

Without significant domain knowledge discovering these modules can be a tedious process.

Cross-cutting connections further complicate this process by obscuring module boundaries.

This research focuses on methods to automate the discovery and identification of code modules.

Recently the use of clustering techniques borrowed from other fields have made their way

into research in the software engineering field. This research summarizes these existing methods

in an overview of how clustering and graphs have been applied to software. It then explores the

use of graphs for software clustering and visualization. Included is a description of a test bed

that was developed for experimentation and analysis of clustering applied to software. This test

bed allowed us to develop our own graph-based partitional clustering algorithm and compare

it to another popular clustering algorithm, the weighted combined algorithm.

www.manaraa.com

2

CHAPTER 2. BASICS OF CLUSTERING AND GRAPHS

In general, clustering is a process of grouping together inter-related items based on common

properties or features of the items. By grouping together similar items, complex data sets can

be divided into multiple smaller sets that are more manageable. As a practical application,

these smaller sets could be divided amongst members of a team if the complex set is more than

a single developer could manage. Successful grouping of common items can decrease the scope

of data that must be understood or processed at one time and can therefore simplify complex

systems.

Clustering of data has been applied within many disciplines as a method of analyzing

data. In biology taxonomy is used to cluster groups of biological organisms based on common

properties. For instance, mammals are grouped together; reptiles are grouped together, etc.

Through this clustering a biologist need not be an expert on all animal species. Instead he

or she can understand properties of an animal based simply on the cluster in which it exists.

Clustering is similarly used in astrophysics, health sciences, and chemistry.

Distance is a common notion in clustering used as a heuristic for measuring how similar items

are to each other. Items sharing a small distance are very similar whereas those with a large

distance are very different. Distance can be an abstract measure. For example, the distance

between two strings could be how many characters they have in common, how similar the length

of the strings are, or how close they are alphabetically. Regardless of the definition of distance,

many clustering algorithms function by grouping items with the smallest distances together.

There are exponentially many cluster combinations for any data set. Clustering algorithms

work efficiently to create meaningful clusters, those with the smallest distance between items

in the clusters and maximum spacing between clusters[9].

Graphs are mathematical structures used to model relationships between objects. A graph

www.manaraa.com

3

contains vertices, or nodes which represent entities and edges that represent the relationship

between those entities. Relationships represented as edges can be physical relationships; in the

case of transportation network graphs nodes could be cities and edges can represent the roads

that connect them. Edges can also be abstract or virtual, representing some other relationship

nodes have in common. Graphs are commonly used in computer science because they allow for

intuitive visualization of relationships by modeling vertices as dots or circles and edges as lines

connecting those dots or circles.

Significant research has been done on the properties of. Problems solved by graphs include

graph coloring, routing, network flows, and covering.

Of particular relevance to this research is the use of graphs to represent and analyze flow

networks. Flow networks, frequently used for transportation network diagrams, have weighted

edges that connect a source node to a sink node through intermediate nodes. Flow problems

include those like the maximum flow problem which seeks to find the path with most capacity,

based on edge weight, from a source to a sink node.

Algorithms like the Ford-Fulkerson Algorithm and Edmond-Karps Algorithm are available

to compute the maximum flow of a flow network. These maximum-flow algorithms are aug-

mented by the max-flow min-cut theorem which states that the maximum flow from a source

to a sink in a flow network is equal to the minimum capacity, which if removed, would result

in no flow between the source and the sink[9]. Finding the minimum-cut is a mathematically

proven way of splitting a graph into two smaller graphs.

It is theorized that if one could adequately model software as graphs, that such algorithms

from the graph theory field could be used to break complicated sets of software artifacts into

smaller sets that represent the software’s modules.

www.manaraa.com

4

CHAPTER 3. SOFTWARE CLUSTERING AND GRAPHS

There are numerous methods of quantifying the quality of software. Many such methods

analyze the amount of coupling and cohesion in a given codebase. Well-designed software

will exhibit low coupling, the degree in which a module depends on other modules, and high

cohesion, the degree in which elements of a module belong together[8]. Software elements in

code with low coupling and high cohesion will naturally group together.

When these natural groupings, or clusters are known, software understanding and mainte-

nance becomes easier because developers may be able to limit the scope of their work to the

cluster under review. Research into the use of clustering on software aims to exploit the natural

sets that exist within well-designed code to expose underlying secrets of the software.

Likewise, graphs can be used as a tool to pictorially visualize relationships implicit in the

software. Software itself includes several sets of artifacts that are interrelated. At a macro

level software can be viewed as a series of functions that are in the same classes or a series

of header files that include each other. At a micro level software can be viewed as individual

code statements that call each other or access the same variable. These relationships can all

be modeled as graphs.

Software developers can use function call graphs to visualize a sometimes complicated web

of function calls. Control flow branches can be visualized to simplify test coverage analysis.

Beyond those visualization techniques, it has been shown that techniques from the graph theory

field can be applied to software if the correct program artifact relationships are graphed[2].

Another such method of modeling program relationships as graphs is the source graph,

described in [13] . In a source graph nodes represent code files, functions, data types, and

variables. Edges represent the contain and use relationships between the nodes. Included in

source graphs are sub-graphs like uses graphs, data dependency graphs, definition-use graphs,

www.manaraa.com

5

and is-component-of graphs. These sub-graphs are used by [4] as a property-based measure

of software. Through existing research it is apparent that modeling software as graphs can

provide a valuable abstraction for software analysis.

www.manaraa.com

6

CHAPTER 4. PROPOSED APPROACH

As mentioned previously and detailed in the related works section, research has been done

on methods of visualizing software and methods of applying clustering to software. A goal of

this research was to explore new methods of combining these two areas of study to further a

developer’s ability to understand and maintain software.

It was hypothesized that applying clustering to software graphs could be used not only

to extract software modules but also to display it in a way that is easy for a developer to

understand. To accomplish this we begin by deciding how to represent software as graphs and

then how to apply clustering to those graphs.

There are numerous different relationships inherent in software and because graphs provide

an abstraction to construct powerful algorithms to analyze those relationships there are nu-

merous ways to model software as graphs. Each of these approaches has its advantages and

disadvantages.

We began with a simple call graph, which is a classic way of modeling call relationships. In

a call graph functions are represented as nodes. Two nodes share a directed edge if one of the

functions calls the other function. This representation reveals functional flow but we found it

didn’t give a complete enough view of the software for module extraction. Call relationships

don’t reveal hidden control mechanisms like the use of mutexes and semaphores for synchro-

nization of multi-threaded programming. Call relationships also don’t reveal the flow of data

through shared memory or mailboxes.

While call relationship graphs are valuable, other software relationships can provide a more

relevant graph for object-oriented software. Commonly accepted object-oriented design prin-

ciples dictate the grouping of related types and functions that operate on those types. This

research proposes taking advantage of this principle by relating functions based on the data

www.manaraa.com

7

types they access rather than just their call relationships. For example, two functions using

the common wait and signal functions for thread synchronization wouldn’t be related in a call

graph; there is no direct function call from one to another. However, the semaphore type that

these two functions use is common between the functions. Using the usage of types to relate

functions gives a data set that includes hidden control.

We propose modeling this type usage relationship in a graph that uses functions as nodes

that share an edge if the two functions access a common data type. The edges are therefore

not directed. It can be noted that two functions could share multiple different data types and

theorized that functions sharing many data types are more closely related than those sharing

fewer data types. To improve the clustering process edges were weighted based on the number

of data types the source and sink nodes share.

After deciding on the software relationships to model, analysis can be done on that graph

to uncover information about the software. As previously mentioned, it was theorized that

clustering based on the software graph could be used to extract software modules. Creating

clusters from graphs has been widely researched. However, we believe that the generic clustering

algorithms fail to take advantage of some truths hidden in the software. For instance, code

with low coupling and high cohesion will form natural groupings. Because the graphs, and the

relationships contained, are of a particular type we can make assumptions about how clusters

in the graph should present themselves.

Methods of clustering graphs, like using the Edmonds-Karp maximum flow algorithm com-

bined with the min-cut theorem to divide graphs into smaller graphs, have been proven to

provide optimal results[6]. A limitation of this and similar algorithms is that the runtime com-

plexity of each iteration is O(NE2), where N is the number of nodes and E is the number of

edges. Software projects can easily involve hundreds if not thousands of functions which makes

implementing these algorithms on software impractical.

By exploiting the assumption that well-designed object oriented code will naturally cluster,

we theorize that computationally-complex optimal clustering isn’t necessary. We propose that

a much simpler algorithm that approximates clusters is more than sufficient to provide valuable

software module extraction.

www.manaraa.com

8

CHAPTER 5. RELATED RESEARCH

Using graphs to model software has been researched significantly. Some of these graphs,

such as the Program Dependence Graph (PDG) have been in use since the late 1980s as a

method to optimize compilers. [7] Other research has focused on the automated extraction of

software architecture from code. A summary of the existing research related to our hypothesis

provides background and demonstrates the relevance of this research.

5.1 Star Diagrams: Designing Abstractions out of Existing Code

Recently several different research efforts have focused on methods of using functions and

data types to visualize code. One such method of visualizing code is the star diagram, which

is described in [3]. The author of [3] describes a visualization technique to help a developer

reengineer existing legacy systems into an object-oriented system. The author points out the

steps necessary to reengineer such a system. First, the programmer must identify all the uses

of a data structure that is going to be encapsulated into object-oriented objects. Next, the

programmer groups similar computations on the data structure. From there the programmer

can plan his or her task and begin manipulating expressions.

The star diagram is a visualization that gives a software engineer a bottom-up view of the

source code which allows for easier reengineering. The diagram, as shown in figure 5.1, starts

with a single root node on the left that denotes all the references to the data structure under

analysis. Each operation directly referencing that data structure is connected to the right of

that root node by an edge. The operation consuming the result of this reference is connected

to the right of those operations, creating a tree.

These star diagrams are a visualization technique but [3] doesn’t propose automated pro-

www.manaraa.com

9

cessing on those diagrams to perform the re-engineering. Nevertheless, the paper proposes a

valuable visualization technique for software, and shows how proper visualization techniques

can benefit developers. An automated process for refactoring code is described in [12].

Figure 5.1 Star Diagram

5.2 Clustering Software Using Knowledgebase

As summarized in [1], software engineers frequently get source code as their most updated

source of information about the software. For various reasons documentation can become

outdated, limited or nonexistent. Therefore, [1] proposes using software clustering as a method

of identifying subsystem structures. More specifically, [1] proposes the use of a knowledgebase

to perform the clustering.

Knowledgebases are used in the artificial intelligence field. A knowledgebase is a set of

data in the form of rules that describes knowledge about a topic. In the case of software the

knowledgebase would be the repository of information describing how software entities might

www.manaraa.com

10

be related and the weights assigned to those relations.

For instance, a knowledgebase might consider function calls, type usage, functions calling

the same function, naming prefixes, etc. Each of these considerations are assigned a weight

inside the knowledgebase. Building this knowledgebase is a tedious manual process, but once

it is developed on generic entities it can be used across multiple software projects with minor

modification.

Once the knowledgebase is developed it is then possible to measure the similarity between

two software entities. Once the similarity between all software entities under examination is

determined [1] creates a similarity matrix that is used to identify subsystems.

The knowledgebase identifies ”soul clusters” from some obligatory subsystems with known

properties. As an example given in [1] a library management system would have subsystems

like ”Book” or ”Member”. With soul clusters identified all other entities are compared with the

soul clusters. If entities are similar enough to the soul clusters defined in the knowledgebase

they are included in the soul cluster.

The remaining software entities are considered ”candidate clusters.” These candidate clus-

ters are merged together based on their similarity measurement from the knowledgebase. Sim-

ilarity matrices are built and clusters are joined iteratively until a threshold stopping criteria

is met.

In this research, it is concluded that as a knowledgebase improves so does the accuracy of

the software cluster. However, the process of building the knowledgebase can be labor intensive

and still requires knowledge of the software in order to implement correctly.

5.3 Term Weighting Schemes for Labeling Clusters

Research done in [14] acknowledges that software clusters are valuable to developers, but

recognizes that those clusters could be difficult to understand if they aren’t labeled correctly.

To overcome this difficulty [14] proposes the use of a term weighting scheme to automate cluster

labeling.

Term weighting schemes are used in the information retrieval field to weight terms based

on their importance in a document. Four different term weighting schemes, Inverse Document

www.manaraa.com

11

Frequency (IDF), RF, Odds Ratio (OR), and chi-square, were analyzed using clusters from the

CD Net and Xfig d software systems. Terms used in software artifacts like the NET term in

a function NET SV AddrToString were weighted, with the heaviest weighted terms becoming

the cluster label. In their analysis the chi-squared method obtained the most meaningful labels.

5.4 Weighted Combined Algorithm

As described in [11], research has been done exploring the use of clustering techniques for

reverse engineering and software architecture recovery. There are several available similarity

measures, but those need to be tailored to software. Therefore, [11] examines a variety of those

measures and proposes a new algorithm for finding inter-cluster distance.

To create any clusters, first the similarity between entities must be measured. Similarity

can either be based on a direct link or sibling link approach. The direct link measures how close

two entities are related, such as a function calling another function. A sibling link approach

measure similarity based on shared features. In this case software entities can be viewed as

graph nodes sharing edges that represent features the nodes have in common. The sibling link

approach lends itself well to software and is therefore used in [11].

After the type of similarity is decided there are several similarity measures available to

measure how similar the entities are. As with other research, association coefficients, distance

measures, and correlation coefficients are considered. Association coefficients calculate simi-

larity based on binary features: either a feature is present or it isn’t. Common association

coefficient methods include the Jaccard coefficient, simple coefficient, and Sorensen-Dice coef-

ficient. Likewise various distance measures are considered, including the Euclidean distance,

Canberra distance, and Minkowski distance. Distance measures calculate the dissimilarity

between entities. The Pearson product moment correlation coefficient is also presented.

After the measure of distance between entities has been calculated, the entities can be clus-

tered. Maqbool [11] asserts that clustering algorithms fall into two categories: partitional and

hierarical. Partitional algorithms start with an initial partition and then modify it iteratively

until the final partitions are found. Hierarchical algorithms, on the other hand, can either build

clusters by starting with nothing and iteratively connecting nodes, or starting with everything

www.manaraa.com

12

connected and splitting nodes until clusters are formed. Several different linkage algorithms

exist to measure a cluster’s distance from other clusters, including single linkage, complete

linkage, weighted average linkage, and un-weighted average linkage.

To be able to claim successful clustering there must be a method available to assess or

validate the performance of a clustering algorithm. Maqbool [11] summarizes three common

validation studies: external assessment, internal assessment, and relative assessment. With

external assessment the results of the clustering algorithm are compared to an expert decom-

position obtained by a subject matter expert of the code under analysis. Precision and recall is

a common method of comparing that expert decomposition with the algorithm’s results. The

precision and recall method is described later in this paper because it is used to compare the

results of this research to an expert decomposition.

Maqbool and Barbi [11] go on to summarize a limitation of their previously published

combined algorithm and proposes the weighted combined algorithm to overcome that limitation.

The weighted combined algorithm operates by creating a feature vector for each cluster which

is the binary OR of the feature vector of each of the individual entities in the cluster. This

feature vector includes information about what data is accessed by the entities.

Figure 5.2 Weighted Combined Algorithm Feature Vector

After the feature vector for each cluster is determined a similarity matrix using the Jaccard

coefficient is created. The most similar entities in that matrix are clustered together. The

weighted combined algorithm, unlike the combined algorithm, maintains the number of entities

www.manaraa.com

13

in a cluster that access each specific feature instead of starting over each iteration.

Figure 5.3 Weighted Combined Algorithm Combined Feature Vector

In addition to proposing the weighted combined algorithm, [11] tests the algorithm using

the code for Xfig, an open source drawing tool, and Bash, a Unix shell. The tests analyzed the

weighted combined algorithm using a variety of similarity measures and compared the weighted

combined algorithm to the complete algorithm. The weighted combined algorithm was shown

to yield better results, judged by a higher precision/recall crossover point, than the complete

algorithm as well as the combined algorithm.

www.manaraa.com

14

Figure 5.4 Weighted Combined Algorithm vs Complete, Xfig f files Subsystem

5.5 Hierarchical Clustering for Software Architecture Recovery

The paper [10] reviews several different methods of using clustering for software architecture

recovery. In doing so, it provides an analysis of the behavior of a variety of similarity and

distance measures as they apply to software clustering. As an overview of clustering, [cite

hierarchical clustering] introduces both formal and non-formal software features that can be

used as entities for similarity analysis. Examples of formal features could be function calls

or accessing variables. Non-formal features might be things like comments or the developer’s

name. Once the features to analyze are identified, clustering algorithms relate them through

similarity measures like distance measures, correlation coefficients, and association coefficients.

These similarity measures then allow the algorithms to cluster similar entities together until a

threshold number of clusters are formed.

Some similarity measures will yield similar results between multiple entities. As discovered

www.manaraa.com

15

experimentally in our research and presented in [10], arbitrary decisions in clustering can cause

poor algorithm performance.

In addition to providing an overview of clustering methods, [10] includes a summary of

comparative studies done between a variety of software clustering algorithms including the

Single Linkage Algorithm (SLA), Complete Linkage Algorithm (CLA), Combined Algorithm

(CA) and the Weighted Combined Algorithm (WCA) detailed above. In some of the studies

summarized, WCA was shown to extract understandable software architecture. As such, it was

analyzed and used in this research for comparison purposes.

www.manaraa.com

16

CHAPTER 6. EXPERIMENTAL SETUP

To research graph-based clustering on software four experimental tools were created. They

include a data mining tool, cluster builder tool, graph viewer tool, and cluster scoring tool.

The purpose of the data miner tool is to gather program artifacts from the software under

analysis. As proposed, our graphs represent the relationships between functions using the

types they access. The data mining tool, developed in Java, extracts those relationships from

software using Ensoft’s Atlas Java APIs. The Atlas tool indexes C code and then provides a

query language to find program artifacts. The data miner tool was developed separately from

other tools to increase the flexibility of this research. It outputs query results as a standard

comma-separated values document that the cluster builder tool can use.

The software cluster builder tool was developed in Java with a purpose of doing analysis on

the data created by the data mining tool. The clustering tool acts as a test bed for clustering

algorithm development as described later in this paper. Rather than duplicating work to

develop a graph implementation and related analysis framework, this research considered many

open source graph implementation libraries. Notable libraries considered included the Java

Universal Network/Graph Framework (JUNG) and JGraph. Due to scalability concerns and

ease of implementing custom algorithms, JGraphT was chosen as the graph framework for the

clustering tool. JGraphT is an open source Java library of graph structures and algorithm

developed by Barak Neveh and contributors.

Within the software clustering tool, using the JGraphT library, a graph clustering algo-

rithm framework was implemented. This framework allows for rapid prototyping of clustering

algorithms using data output from the data mining tool. Output from the software clustering

tool such as resulting clusters is logged to file and a visualization of the resulting clusters is

rendered using the JGraph graph visualization and layout library.

www.manaraa.com

17

The graph viewer tool was developed in Java and has a purpose of displaying the graph

clusters for visual analysis. The graph viewer tool uses the JGraph graph visualization engine

developed at the Swiss Federal Institute of Technology in Zurich. JGraph was ideal for this

implementation because it separates out the layout, facade, and graph implementation to allow

for real-time GUI-based manipulation of large graphs.

The cluster scoring tool is used to analyze the output of the cluster builder. This tool

performs precision and recall analysis, comparing cluster output to manually computed truth

data, to grade the clustering algorithm’s correctness.

www.manaraa.com

18

CHAPTER 7. PARTITIONAL ALGORITHM DEVELOPMENT

Mining data from software is useless without a method of parsing the data to reveal useful

information. Even in small software projects the amount of mined data can be overwhelming,

especially without domain knowledge of the software. The bulk of this research is finding and

analyzing effective algorithms to use graphs for automated software architecture extraction

from software code artifacts.

Once a software graph is created the architecture can be extracted using clustering. Clus-

tering algorithms such as the Ford-Fulkerson algorithm finds the maximum flow of a graph.

Combined with the max-flow min-cut theorem, the Ford-Fulkerson algorithm can be used to

find perfect minimum cut clusters in a graph. However, the algorithm is computationally

complex and is therefore impractical for use in even moderate or large software projects.

While there are several algorithms in various fields that provide mathematically correct

clustering results, we chose to exploit relationships inherent in well-designed object-oriented

code to create an algorithm that generates cluster approximations using a reasonable amount

of processing power on large sets of software artifacts.

Throughout the course of researching our hypothesis our approximation algorithm under-

went several iterations. The results of those iterations were compared with truth data gathered

through domain knowledge of the software under analysis to provide improvements through

the iterations.

Our algorithm iterations were tested using C code for the Xinu operating system. Xinu

is a Unix-like operating system developed by Douglas Comer at Purdue University. Xinu is

a small operating system, but with 263 functions and 65 types it provides a viable codebase

for analysis. Those functions and types include operating system components like process,

memory, I/O, timer management, and interprocess communications. [5]

www.manaraa.com

19

7.1 Algorithm 1

The first algorithm attempt started with a connected graph and then relied on a connectivity

analysis to identify the nodes and edges in the cluster.

In the Xinu operating system it was discovered that 52 of the 263 functions don’t share any

common data types with other functions in Xinu. These functions therefore are disconnected

at the beginning of the clustering algorithm.

The remaining 211 functions are connected as a single large graph cluster that must be split

to provide valuable information about the underlying software architecture. The algorithm

operates by splitting the cluster(s) until each has below a threshold number of nodes. To split

the clusters, this algorithm simply removes the edge with the smallest weight. Due to the

splitting nature of this algorithm we refer to it as the partitional algorithm.

Removing the edge with the smallest weight resulted in valuable clusters, but also resulted

in many ”orphaned” nodes, nodes that would be in clusters by themselves. These orphaned

nodes resulted in many small clusters which did little to further our goal of extracting the

software architecture.

To illustrate, the below figure shows an example software graph. With this algorithm the

minimum cut might be the edge between F and G. Instead, the algorithm would remove the

edge between A and B, which would leave A in a cluster by itself.

www.manaraa.com

20

Figure 7.1 Partitional Algorithm 1 Example

7.2 Algorithm 2

For our second iteration of the partitional algorithm, the first algorithm was modified in

an effort to solve the orphaned node issue. Instead of blindly removing the smallest weighted

edge the algorithm would remove the smallest edge whose source and sink nodes both had at

least two edges. In doing this, the algorithm will not create orphaned nodes as it did in the

first iteration.

With this small change the algorithm was still only partially effective in removing orphaned

nodes. Additionally, after comparison with the ideal solution developed using domain knowl-

edge of Xinu, it became clear that the algorithm’s output was far from correct.

The following illustration shows the inefficiency of algorithm two. Once again the ideal

minimum cut would be the edge between F and G. Unlike partitional algorithm one, the edge

between A and B wouldn’t be removed. However, that would then leave a tie for other edges.

www.manaraa.com

21

The algorithm as written would remove the edge between B and C because it was the first edge

the algorithm came across.

In analysis of a real software project it was discovered that there are frequently ties for the

smallest edge. Arbitrarily breaking those ties could produce sub-optimal results.

Figure 7.2 Partitional Algorithm 2 Example

7.3 Algorithm 3

One of the limitations of the second partitional algorithm implementation is that ties in

edge weights aren’t handled in a meaningful way. Instead, the first edge of the lowest weight

that the algorithm comes across would be removed. As shown in the diagram illustrating the

limitation of algorithm two this can be less than ideal.

In an attempt to make the output of the algorithm more meaningful for a developer wishing

to extract the software architecture, details were added to the algorithm to determine what to

do in a ”tie” situation. In algorithm three the smallest weighted edge whose removal wouldn’t

www.manaraa.com

22

result in an orphaned node, and whose source and sink nodes had the fewest number of other

edges would be removed, iteratively, until clusters were below a set threshold.

As an example consider the graph below. Algorithm three would treat edges with a weight

of two as the smallest edges whose removal wouldn’t orphan a node. To break the tie between

edges with weight two, the algorithm looks at an edge x and then calculates how many edges

the source and sink nodes for x have. For instance, in this graph, edge D-E would have a score

of three because E has two edges and D has two edges. Note that the edge between D and E

isn’t counted twice.

Partitional algorithm implementation three would score edge D-E with a three as well as

H-I and I-J. This is the lowest score so one of those edges would be removed. While this simple

example illustrates the improvement in the algorithm, it still isn’t an ideal grouping because

removing those edges wouldn’t result in a smaller cluster.

Figure 7.3 Partitional Algorithm 3 Example

www.manaraa.com

23

7.4 Algorithm 4

Partitional algorithm iteration four improves on algorithm three by modifying the criteria

for breaking ”ties” in a graph. Algorithm four removes the smallest weighted edge that has

the greatest ratio of edge weight to the total edge weight between source and sink nodes that

doesn’t result in an orphaned node.

In creating this algorithm it was theorized that functions that share many data types could

be interface functions to a subsystem. These interface functions would tie two clusters together.

Therefore, using the defined ratio would remove tied edges which would be more effective at

separating subsystems into their own clusters.

To demonstrate, in the below graph algorithm four would treat edges with a weight of two

as the smallest edges whose removal wouldn’t orphan a node. To break the tie between all the

edges of weight two, the algorithm looks at an edge x, and then calculates the ratio between

the weight of edge x to the total weight of all edges connected to the source and sink of x. For

instance, the score for the edge D-E would be calculated as:

w(d− e)/(w(d− e) + w(e− f) + w(c− d)) = 2/6 = 1/3.

The adjusted weights of edges are listed in red. Using these adjusted weights the algorithm

would chose to remove edge F-G, because it has the smallest combined weight. In this case the

removal of F-G is a minimum cut for the graph.

www.manaraa.com

24

Figure 7.4 Partitional Algorithm 4 Example

www.manaraa.com

25

CHAPTER 8. RESULTS

Using the data miner, graph cluster builder, graph viewer, and cluster scoring tools devel-

oped our hypothesis that software modules could be automatically extracted using graph-based

clustering was tested. The tests were done using the Xinu operating system and subsystems of

the Linux operating system. These tests provided for improvements in the partitional algorithm

that allow it to successfully extract software modules.

8.1 Partitional Clustering Algorithm

As described in the Partitional Algorithm Development section, the partitional algorithm

makes decisions to remove edges to split large clusters into smaller clusters until all clusters

are below a threshold size.

Tuning this threshold size to its optimal was done first through manual inspection and then,

as described later in this paper, through precision and recall analysis. Increasing the threshold

size increases the number of functions in a cluster, but decreases the overall number of clusters

the algorithm will produce. The goal is to have that threshold so the resulting clusters would

describe subsystems of the software.

Appendix Table A.1 shows the clusters found when applying the partitional clustering

algorithm to the Xinu operating system using a cluster threshold of 15. The types (edges) used

to make up each cluster are displayed to reveal details of how the algorithm made clustering

decisions. Because the partitional algorithm is based on graphs and a graph viewer tool was

developed, output from the algorithm can be displayed pictorially, as shown in figure 8.1.

www.manaraa.com

26

Figure 8.1 Graph Viewer Output of Sample Clusters

While these results intuitively seem valuable there is a desire to quantify their correctness.

Such quantification can score the algorithm for comparison to other algorithms or to variations

of the same algorithm.

As used in [11], the scoring of this algorithm’s results is done using the precision and recall

measure. Precision and recall is a measure of relevance used in the pattern recognition and

information retrieval field. The measure compares a data set to a truth set in two different

ways: precision, which is the fraction of retrieved data that is relevant; and recall, which is the

fraction of relevant data that is retrieved.

Precision = (PairsinTest ∩ PairsinTruthData)/(PairsinTest)

Recall = (PairsinTest ∩ PairsinTruthData)/(PairsinTruthData)

If only singleton, or orphaned, nodes exist in clusters it would be easy to see that the results

would be zero recall but 100 percent precision. Likewise if there were only one large cluster the

system would have 100 percent recall but zero percent precision. Precision naturally decreases

www.manaraa.com

27

as the size of clusters increases because more of the nodes in the cluster aren’t relevant when

compared to truth data. Inversely, recall naturally increases as cluster size increases because

smaller clusters can mean less relevant data per cluster. The point where recall and precision

intersect is important because it can reveal the optimal tuning for cluster size. Alternatively,

computing the f-score of the precision and recall can be used to measure the overall accuracy.

The f-score is the weighted average of precision and recall, and can be computed as:

f − score = 2 ∗ (precision ∗ recall)/(precision + recall)

To judge the effectiveness of any algorithm there must be truth data to which it can be

compared. In the case of Xinu, partial truth data of the major subsystems was gathered from

experts with domain knowledge in the software.

Table 8.1 Xinu Subsystem Truth Data

Subsystem Functions

Process chprio, create, ctxsw, kill

Files ckmode, dfalloc, dfdsrch, ibclear, ibfree, ibget, ibfree, ibnew, ibput, lf-

close, lfgetc, lfinit, lfputc, lfread, lfsdfree, lfseek, lfsetup, lfsflush, lfs-

newd, lfwrite

Disks dscntl, dsinit, dsinter, dskenq, dskqopt, dskstrt, dsopen, dsread, dsseek,

dswrite

TTY ttycntl, ttygetc, ttyiin, ttyinit, ttyoin, ttyopen, ttyputc, ttyread, ttywrite

Networking arp in, arp find, ethinit, ethinter,ethread, ethrstrt, ethwrite, ethwstrt,

icmp in, ip in, ipsend, rap in, mkarp, netin, netdump, netinit, dgal-

loc, dgclose, dgcntl, dgdump, dginit, dgread, dgwrite, route, udpecho,

udpsend

Utility - cross-cutting close, conf, freebuf, getbuf, getpid, getpath, getnet, getname, getprio,

ioerr, kprintf, open, panic, putc, read, ready. Resched, wait, signal,

suspend

Messaging pcount, preate, pdelete, pinit, perceive, psend, preset

Semaphores receive, send, scount, screate, sdelete, signal, wait, signal, sreset

www.manaraa.com

28

This truth data, while only a partial set of functions in Xinu, was used to determine how

effective the researched algorithm was. Our cluster scoring tool can then be used to compute

precision, recall, and f-score measuring the pairs of functions, in the same cluster, that were

present in both truth data and experimental data.

Table 8.2 Partitional Algorithm Precision and Recall Score

Threshold Precision Recall F-Score

2 0.213115 0.01656051 0.030733

5 0.198413 0.063694268 0.096432

10 0.218519 0.150318471 0.178113

15 0.191489 0.206369427 0.198651

20 0.189641 0.303184713 0.233333

25 0.194872 0.338853503 0.247442

30 0.155738 0.338853503 0.213398

35 0.146315 0.346496815 0.205749

40 0.148746 0.445859873 0.223072

45 0.128019 0.472611465 0.201466

50 0.128019 0.472611465 0.201466

Maximum: 0.247442

www.manaraa.com

29

Figure 8.2 Precision, Recall and F-Score of Xinu Analysis

Analysis shows, as expected, an intersection of precision and recall. This intersection, shown

when all clusters have less than 15 nodes in them, is used as the optimal tuning threshold by

some research. However, due to the fact that recall increases quicker than precision decreases,

the maximum f-score actual occurs when 25 is used as the algorithm threshold.

8.2 Weighted Combined Algorithm

As described in the related works section, related research has analyzed methods of visu-

alizing software and methods of using clustering to understand software. Some research, like

that done on the weighted combined algorithm, examines the use of clustering algorithms to

extract software modules.

The partitional algorithm uses connected graphs as the basis of clustering for the automated

extraction of software modules. The weighted combined algorithm also uses clustering, though

not based on graphs, to extract software modules. To provide a basis for supporting our

www.manaraa.com

30

hypothesis, the weighted combined algorithm was implemented in Java using the Atlas API

and used to analyze the same Xinu operating system code the partitional algorithm analyzed.

The weighted combined algorithm starts with stand-alone software artifacts and then iter-

atively joins those artifacts together to form clusters. The number of iterations the algorithm

goes through is used to tune the algorithm’s performance.

As expected, the weighted combined algorithms provided valuable clusters that give an

approximate representation of the software’s underlying modules. These clusters are can be

found in Appendix B.1.

As with the partitional algorithm, the precision and recall analysis method was applied to

compare the results of the weighted combined algorithm to the truth data found in table 8.1.

Table 8.3 Weighted combined Algorithm Precision and Recall Score

Iterations Precision Recall F-Score

30 0.205128 0.010191083 0.019417

60 0.213592 0.028025478 0.04955

90 0.194286 0.043312102 0.070833

120 0.251479 0.108280255 0.15138

135 0.275269 0.163057325 0.2048

150 0.223438 0.182165605 0.200702

165 0.204983 0.230573248 0.217026

180 0.17475 0.289171975 0.21785

210 0.026766 0.755414013 0.0517

Maximum: 0.21785

www.manaraa.com

31

Figure 8.3 Weighted Combined Algorithm Precision, Recall and F-Score

www.manaraa.com

32

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

An overarching goal of this research was to develop methods of using tools to aid in the

development and maintenance of complex software systems. Since developers frequently find

themselves with large amounts of code and only small amounts of documentation or domain

knowledge, effective methods of extracting software modules from code would be of great value

to the developer.

It was hypothesized that graph-based clustering algorithms could be used to automatically

extract software modules. After identifying the software relationships to visualize using graphs,

we examined methods of clustering those graphs.

This research developed a set of tools for software data mining, visualization, clustering,

and cluster evaluation. These tools allowed us to develop an algorithm showing that software

module extraction is possible through graph clustering.

After a survey of existing literature, we found research done on methods of visualizing

software and research on using clustering for module extraction. We found no research that

used graphs to create software clusters for module extraction. The weighted combined algorithm

uses a different method for module extraction so we implemented that algorithm as a baseline

to validate our hypothesis.

To quantitatively validate our hypothesis that graph-based clustering can be used for soft-

ware modules extraction we used the precision and recall method of pattern recognition to

compare the results from the partitional algorithm and weighted combined algorithm to truth

data.

Results indicate that our algorithm operates with comparable accuracy to the weighted

combined algorithm and that these results are valuable for module extraction. Furthermore,

by using graph-based clustering we are able to view results pictorially. The automatically-

www.manaraa.com

33

extracted modules combined with a graph visualization of results gives developers knowledge

of software that was previously only available to those with significant domain knowledge or

extensive documentation.

While our hypothesis was validated, the notion of using graph-based software clustering

for software module extraction is new, which gives many opportunities for future work. This

research noted that the partitional algorithm and the weighted combined algorithm shared a

precision and recall crossover point that indicates differences between the algorithms. Future

research could compare the strengths and weaknesses of the two algorithms in an attempt to

develop a more accurate hybrid algorithm. Additionally, it may be possible to combine several

software relationships together with the type-use relationship this research used to provide

more optimal module extraction.

This and other related research has shown that software clustering can be used effectively

to extract software modules. This capability, especially if enhanced through future research,

can increase a developer’s ability to maintain and develop complex software systems.

www.manaraa.com

34

APPENDIX A. PARTITIONAL ALGORITHM CLUSTER RESULTS

Table A.1 Paritional Algorithm Xinu Clusters

Cluster Elements

Cluster 1: x date getutim

Types in cluster 1: clktime

Cluster 2: control remove rename access

Types in cluster 2: devsw.dvcntl devtab devsw

Cluster 3: mkinit mark

Types in cluster 3: mkmutex nmarks

Cluster 4: pdelete psend ptclear freebuf bpdump pinit pcreate getbuf preceive

poolinit mkpool pcount x bpool preset

Types in cluster 4: ports pt.ptstate pt ptmark MARKER marks nmarks pt.ptssem

pt.pthead pt.pttail ptnode pt.ptrsem pt.ptseq ptnode.ptnext ptn-

ode.ptmsg ptfree pt.ptmaxcnt bptab nbpools bpool.bpnext bpool.bpsem

bpool bpmark bpool.bpsize ptnextp

Cluster 5: mount naminit ndump unmount namrepl mprint

Types in cluster 5: nament.nrepl nam Nam.nnames Nam nament nam.nametab na-

ment.ndev nam.nnames nament.npre Nam.nametab devsw.dvname de-

vtab devsw

Cluster 6: signaln sreset scount screate signal sdelete

Types in cluster 6: sentry.semcnt semaph sentry.sstate sentry.sqhead sentry

Cluster 7: dskbcpy dumkdl

Types in cluster 7: dskdbp

Cluster 8: suspend resume

Types in cluster 8: pentry.pstate proctab pentry pentry.pprio

www.manaraa.com

35

Table A.1 (Continued)

Paritional Algorithm Xinu Clusters Continued

Cluster 9: enqueue insertd getlast newqueue dequeue getfirst

Types in cluster 9: qent.qprev qent q qent.qnext qent.qkey

Cluster 10: clkinit stopclk strtclk

Types in cluster 10: preempt defclk clkdiff clockq slnempty

Cluster 11: send sendf

Types in cluster 11: pentry.phasmsg pentry.pstate proctab Bool pentry pentry.pmsg

Cluster 12: getpid recvclr receive

Types in cluster 12: currpid pentry.phasmsg proctab Bool pentry pentry.pmsg

Cluster 13: sleep10 unsleep wakeup recvtim sleep insert qxdump

Types in cluster 13: clkruns pentry.pstate qent.qkey proctab qent sltop q qent.qnext clockq

pentry slnempty currpid qent.qprev

Cluster 14: setdev setnok kill addarg

Types in cluster 14: proctab pentry pentry.pdevs pentry.pnxtkin pentry.pstate pentry.pbase

Cluster 15: freemem mdump getmem getstk nulluser x snap x mem

Types in cluster 15: memlist.mnext memlist mblock.mnext maxaddr mblock.mlen end

mblock pentry.pstate edata etext pentry proctab pentry.pstklen

Cluster 16: sysinit newsem chprio pxdump resched getprio x ps wait ready newpid

create

Types in cluster 16: pentry.pstate sentry.sqtail pentry proctab semaph sentry.sstate sen-

try currpid nextsem numproc Bool pentry.plimit pentry.phasmsg

pentry.pprio pentry.pargs pentry.pname pentry.paddr pentry.pbase

nextproc rdyhead pentry.psem pentry.pregs qent q

Cluster 17: rfread

Types in cluster 17: -

Cluster 18: getc

Types in cluster 18: -

Cluster 19: putc

Types in cluster 19: -

www.manaraa.com

36

Table A.1 (Continued)

Paritional Algorithm Xinu Clusters Con’t

Cluster 20: x mount init iosetvec lfwrite rfwrite seek close lfread open ioinit x devs

dscntl write read devdump

Types in cluster 20: devsw.dvname devtab devsw devsw.dvovec devsw.dvivec devsw.dvminor

devsw.dvioblk devsw.dvcsr

Cluster 21: rfcntl rfmkpac rfalloc rfopen rfio rfinit rfclose rfseek rfdump x rf rfsend

Types in cluster 21: rfinfo.device Rf.device Rf rfinfo rfinfo.rmutex Rf.rmutex Rf.rftab rf-

blk.rf state rfinfo.rftab rfblk rfblk.rf pos rfblk.rf mode rfblk.rf name rf-

blk.rf dnum rfblk.rf mutex devsw.dvioblk devsw

Cluster 22: dsksync dsinter dsread dskqopt dsseek dswrite dsinit dskenq dskstrt

Types in cluster 22: dreq dreq.drop dreq.drdba dreq.drpid dreq.drstat dreq.drbuff DBADDR

dreq.drnext dsblk dsblk.dreqlst devsw.dvioblk dskrbp currpid de-

vsw dtc.dt csr dsblk.dcsr dtc xbdcb.xcntl xbdcb.xop xbdcb.xladdr

dtc.dt xdar dsblk.ddcb dtc.dt car xbdcb.xunit xbdcb.xcount dtc.dt xcar

xbdcb xbdcb.xmaddr dtc.dt dar

Cluster 23: lfinit dfalloc

Types in cluster 23: flblk flblk.fl pid fltab

Cluster 24: ibget ibput

Types in cluster 24: dskdbp IBADDR iblk

Cluster 25: lfsnewd lfsdfree

Types in cluster 25: dsblk dir.d fblst devsw.dvioblk freeblk dsblk.dflsem dir freeblk.fbnext

DBADDR devtab dsblk.ddir devsw

Cluster 26: dsopen dumkfs dfdsrch ibnew lfsetup lfputc ibfree ibclear dumkil iblfree

lfgetc lfclose dudir lfseek lfsflush

Types in cluster 26: flblk Bool flblk.fl mode devsw.dvioblk flblk.fl pos flblk.fl dch flblk.fl dev

fdes flblk.fl dent devsw flblk.fl iba flblk.fl bptr iblk fdes.fdiba flblk.fl buff

iblk.ib dba flblk.fl iblk DBADDR IBADDR flblk.fl ipnum dsblk de-

vtab dsblk.ddir dir flblk.fl iblk.ib dba dir.d fblst dir.d nfiles dir.d id

dir.d iblks dir.d filst fdes.fdname dir.d files fdes.fdlen iblk.ib next ds-

blk.dflsem iblk.ib byte flblk.fl pid currpid

www.manaraa.com

37

Table A.1 (Continued)

Paritional Algorithm Xinu Clusters Con’t

Cluster 27: x rls echoch x creat

Types in cluster 27: Bool

Cluster 28: ttyiin ttyoin tdump1 ttycntl ttywrite rststate erase1 ttyinit kputc ttyread

writcopy ttygetc ttyputc savestate eputc

Types in cluster 28: Bool tty.oflow tty.oheld csr.ctstat tty.ostop tty csr.crbuf csr tty.ibuff

tty.iecho tty.ihead tty.isem tty.ioaddr tty.imode tty.iintpid tty.iintr

tty.ieof tty.ieofc tty.ierase tty.iintrc tty.ikill tty.icursor tty.ierasec

tty.ifullc tty.ostart tty.ikillc tty.icrlf csr.ctbuf tty.obuff tty.otail tty.osem

tty.ebuff tty.ehead tty.odsend tty.etail tty.itail tty.ohead devsw.dvminor

devsw devtab devsw.dvcsr csr.crstat saveps savedev savectstat savecr-

stat tty.evis tty.ieback devsw.dvioblk tty.ocrlf

Cluster 29: rfputc ttyopen ethstrt ethinit rfgetc ethread ethwstrt ethrstrt ethinter

Types in cluster 29: devsw.dvnum devsw etblk.ercmd etblk.eioaddr dcmd.dc st1 etblk dcmd

dqregs dqregs.d csr etblk.etdev Eaddr etblk.etpaddr dqsetu etblk.etrpid

devsw.dvioblk etblk.etrsem etblk.ewcmd dcmd.dc st2 dcmd.dc buf et-

blk.etwsem dcmd.dc flag dcmd.dc bufh etblk.etlen dqregs.d wcmd et-

blk.etwtry dqregs.d wcmdh etblk.etsetup dcmd.dc len dqregs.d rcmd

dqregs.d rcmdh

Cluster 30: shell lexan x help

Types in cluster 30: cmds Shl shvars cmdent cmdent.cmdnam shvars.shncmds Shl.shncmds

shvars.shtok Shl.shtktyp Shl.shtok shvars.shtktyp

Cluster 31: dgparse dgdump x dg

Types in cluster 31: dgblk.dg faddr dgblk IPaddr dgblk.dg fport dgblk.dg mode dg-

blk.dg state dgtab dgblk.dg lport dgblk.dg dnum dgblk.dg xport

Cluster 32: icmp in netout

Types in cluster 32: epacket.ep data epacket ip ip.i paclen ip.i dest IPaddr

www.manaraa.com

38

Table A.1 (Continued)

Paritional Algorithm Xinu Clusters Con’t

Cluster 33: arpfind adump x routes arpinit

Types in cluster 33: Arp.atabnxt arpent.arp Ead arpent arpent.arp dev Arp.atabsiz Arp

Eaddr arpblk.atabsiz arpblk.atabnxt Arp.arptab IPaddr arpblk arp-

blk.arptab arpent.arp Iad arpent.arp state st

Cluster 34: mkarp dgmcntl getpath getnet route ipsend getaddr arp in sndrarp eth-

write rarp in netin

Types in cluster 34: eheader IPaddr eheader.e ptype epacket.ep data epacket epacket.ep hdr

epacket.ep hdr.e ptype arppak.ar op arppak.ar tha arppak.ar tpa et-

blk.etpaddr arppak.ar sha Net epacket.ep hdr.e dest arppak Eaddr net-

info arppak.ar spa etblk eheader.e dest netinfo.netpool Net.netpool

Net.gateway netinfo.gateway arpent arpblk.arpwant Arp.arpwant

Arp.arppid Arp Arp.arptab arpblk arpblk.arppid arpblk.arptab

arpent.arp state Bool Net.mavalid netinfo.mavalid netinfo.mynet

Net.mynet arpent.arp Ead arpent.arp dev netinfo.myaddr Net.myaddr

devsw.dvioblk devtab devsw eheader.e src arpblk.rarppid Arp.rarppid

Cluster 35: dgmopen dgclose dginit dgalloc

Types in cluster 35: dgblk.dg state dgblk.dg dnum dgtab dgblk Bool netq netinfo dg-

blk.dg netq netq.valid netq.uport netinfo.netqs Net Net.netqs

Cluster 36: ip in x net nqalloc netdump getname udpnxtp netinit

Types in cluster 36: netq.xport netq netinfo Net.nover netq.uport netinfo.netqs netinfo.nover

Net netinfo.ndrop Net.netqs netq.pid Net.ndrop Bool netq.valid

Net.nmutex Net.mavalid netinfo.nxtprt netinfo.npacket netinfo.netpool

netinfo.nmutex netinfo.mavalid Net.npacket Net.nxtprt Net.netpool net-

info.mnvalid Net.mnvalid

www.manaraa.com

39

Table A.1 (Continued)

Paritional Algorithm Xinu Clusters Con’t

Cluster 37: udpsend rwhod dgcntl dgread x who rwhoind login dgwrite x uptime

Types in cluster 37: ip.i data udp.u udplen udp.u data udp epacket.ep data epacket ip

udp.u sport rwent.rwmach rwent Rwho.rwnent rwhopac.rw btim

rwent.rwslast rwhopac.rw load rwinfo rwent.rwusers rwent.rwload

rwent.rwlast rwinfo.rwnent rwinfo.rwcache rwhopac.rw sndtim

rwhopac Rwho.rwcache rwhopac.rw host Rwho rwent.rwboot Shl

Bool shvars.shlast shvars.shlogon Shl.shuser MARKER Shl.shmark

shvars.shuser Shl.shlast shvars shvars.shmark Shl.shused Shl.shlogon

shvars.shused marks nmarks netinfo netinfo.netpool IPaddr Net.netpool

Net dgblk devsw.dvioblk dgblk.dg xport dgblk.dg mode devsw

xgram.xg faddr dgblk.dg lport xgram.xg data xgram.xg fport xgram

www.manaraa.com

40

APPENDIX B. WEIGHTED COMBINED ALGORITHM RESULTS

Table B.1 Weighted Combined Algorithm Xinu Clusters

Cluster Functions

Cluster 0: Qdumph

Cluster 1: Sndrarp

Cluster 2: hl2vax

Cluster 3: Userret

Cluster 4: x rm

Cluster 5: Getpid

Cluster 6: Sleep

Cluster 7: Namopen

Cluster 8: x rls

Cluster 9: Tqdump

Cluster 10: Qdumpa

Cluster 11: Iosetvec

Cluster 12: Ckmode

Cluster 13: net2hs

Cluster 14: Udpecho

Cluster 15: Blkcopy

Cluster 16: Ionull

Cluster 17: Getname

Cluster 18: Ctxsw

Cluster 19: Prdumpa

Cluster 20: Cksum

Cluster 21: vax2hl

www.manaraa.com

41

Table B.1 (Continued)

Weighted Combined Algorithm Xinu Clusters Continued

Cluster 22: Rfmkpac

Cluster 23: Dgmcntl

Cluster 24: Nulluser

Cluster 25: Prdumph

Cluster 26: x snap

Cluster 27: Tdump

Cluster 28: Nammap

Cluster 29: x sleep

Cluster 30: Outint

Cluster 31: dgparse dgdump x dg

Cluster 32: x reboot

Cluster 33: Main

Cluster 34: Udpsend

Cluster 35: Clkinit

Cluster 36: x cp

Cluster 37: Ascdate

Cluster 38: rfcntl rfsend

Cluster 39: Xdone

Cluster 40: x creat

Cluster 41: Gettime

Cluster 42: shell x help

Cluster 43: Kprintf

Cluster 44: getutim x date

Cluster 45: Setclkr

Cluster 46: dot2ip

Cluster 47: Restart

Cluster 48: Clkint

Cluster 49: dginit lfinit dfalloc dgalloc

Cluster 50: x kill

www.manaraa.com

42

Table B.1 (Continued)

Weighted Combined Algorithm Xinu Clusters Continued

Cluster 51: Blkequ

Cluster 52: icmp in netout ipsend

Cluster 53: Netnum

Cluster 54: x close

Cluster 55: x echo

Cluster 56: x unmou

Cluster 57: lexan addarg

Cluster 58: Dumkdl

Cluster 59: x mv

Cluster 60: rwhod x who rwhoind login x uptime

Cluster 61: Prdump

Cluster 62: Dgcntl

Cluster 63: net2hl

Cluster 64: dsksync dsinter dsread dskqopt dsinit dswrite dsseek dskstrt dskenq

Cluster 65: Tdumph

Cluster 66: ethstrt ethinit ethread ethwstrt ethrstrt ethinter

Cluster 67: mkinit mark

Cluster 68: freemem mdump getstk getmem x mem

Cluster 69: Inint

Cluster 70: Panic

Cluster 71: Ioerr

Cluster 72: Rwho

Cluster 73: ip2name

Cluster 74: dsopen lfsnewd dumkfs dfdsrch ibnew lfsetup lfsdfree ibput lfputc ibfree

iblfree lfclose lfgetc dudir lfseek lfsflush

Cluster 75: ttyoin ttyiin ttycntl tdump1 rststate ttyinit ttyread kputc writcopy

ttygetc ttyputc savestate eputc

Cluster 76: x exit

Cluster 77: hl2net

www.manaraa.com

43

Table B.1 (Continued)

Weighted Combined Algorithm Xinu Clusters Continued

Cluster 78: setdev suspend setnok resume chprio getprio ready newpid

Cluster 79: ibclear ibget dumkil dskbcpy

Cluster 80: control ioinit remove rename ttywrite access

Cluster 81: pdelete pcount psend ptclear pinit pcreate preset perceive

Cluster 82: Ethwrite

Cluster 83: rfalloc rfopen rfio rfinit x rf rfdump rfseek rfclose

Cluster 84: x cat

Cluster 85: hs2net

Cluster 86: mount naminit unmount ndump namrepl mprint

Cluster 87: newsem signaln sreset scount screate signal sdelete

Cluster 88: x net ip in dgmopen dgread nqalloc dgclose netdump udpnxtp netinit

dgwrite

Cluster 89: arpfind adump mkarp getpath getnet route x routes arp in getaddr

rarp in netin arpinit

Cluster 90: Stopclk

Cluster 91: putc getc write read seek

Cluster 92: mkpool freebuf x bpool bpdump getbuf poolinit

Cluster 93: sleep10 sysinit send pxdump resched strtclk unsleep kill recvclr recvtim

x ps wait create dequeue enqueue insertd wakeup getlast sendf newqueue

insert receive qxdump getfirst

Cluster 94: Qdump

Cluster 95: lfread ttyopen rfputc dscntl rfgetc rfread lfwrite rfwrite

Cluster 96: open x devs x mount init devdump close

Cluster 97: erase1 echoch

www.manaraa.com

44

BIBLIOGRAPHY

[1] Adnan, M. N., Islam, M. R., and Hossain, S. (2011). Clustering software systems to identify

subsystem structures using knowledgebase. 2011 Malaysian Conference in Software Engi-

neering, pages 445–450.

[2] Allen, E. (2002). Measuring graph abstractions of software: An information-theory ap-

proach. Software Metrics, 2002. Proceedings. Eighth IEEE

[3] Bowdidge, R. (2007). Star diagrams: Designing abstractions out of existing code. 00 PS

LA’96 Workshop on Transforming Legacy . . . , pages 1–5.

[4] Briand, L., Morasca, S., and Basili, V. (1996). Property-based software engineering mea-

surement. Software Engineering, IEEE . . . , 22(1).

[5] Comer, D. (2011). Operating System Design: The Xinu Approach. CRC Press.

[6] Edmonds, J. and Karp, R. M. (1972). Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems. Journal of the ACM, 19(2):248–264.

[7] Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The program dependence graph

and its use in optimization. ACM Transactions on Programming Languages and Systems,

9(3):319–349.

[8] Hitz, M. and Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented

systems. . . . of the International Symposium on Applied . . . , pages 1–10.

[9] Kleinberg, J. and Tardos, E. (2006). Algorithm Design. Addison-Wesley.

[10] Maqbool, O. (2007). Hierarchical clustering for software architecture recovery. Software

Engineering, IEEE, 33(11):759–780.

www.manaraa.com

45

[11] Maqbool, O. and Babri, H. (2004). The weighted combined algorithm: a linkage algo-

rithm for software clustering. Eighth European Conference on Software Maintenance and

Reengineering, 2004. CSMR 2004. Proceedings., pages 15–24.

[12] O’Connor, A., Shonle, M., and Griswold, W. (2005). Star diagram with automated refac-

torings for Eclipse. Proceedings of the 2005 OOPSLA workshop on Eclipse technology eX-

change - eclipse ’05, pages 16–20.

[13] Sartipi, K. and Kontogiannis, K. (2003). On modeling software architecture recovery as

graph matching. International Conference on Software Maintenance, 2003. ICSM 2003.

Proceedings., pages 224–234.

[14] Siddique, F. and Maqbool, O. (2011). Analyzing Term Weighting Schemes for Labeling

Software Clusters. 2011 15th European Conference on Software Maintenance and Reengi-

neering, pages 85–88.

	2013
	Automated Software Architecture Extraction Using Graph-based Clustering
	John Thomas Chargo
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	2. BASICS OF CLUSTERING AND GRAPHS
	3. SOFTWARE CLUSTERING AND GRAPHS
	4. PROPOSED APPROACH
	5. RELATED RESEARCH
	5.1 Star Diagrams: Designing Abstractions out of Existing Code
	5.2 Clustering Software Using Knowledgebase
	5.3 Term Weighting Schemes for Labeling Clusters
	5.4 Weighted Combined Algorithm
	5.5 Hierarchical Clustering for Software Architecture Recovery

	6. EXPERIMENTAL SETUP
	7. PARTITIONAL ALGORITHM DEVELOPMENT
	7.1 Algorithm 1
	7.2 Algorithm 2
	7.3 Algorithm 3
	7.4 Algorithm 4

	8. RESULTS
	8.1 Partitional Clustering Algorithm
	8.2 Weighted Combined Algorithm

	9. CONCLUSIONS AND FUTURE WORK
	A. PARTITIONAL ALGORITHM CLUSTER RESULTS
	B. WEIGHTED COMBINED ALGORITHM RESULTS
	BIBLIOGRAPHY

